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5.1 Introduction

The concept of a non-trivial stationary optimal stock (SOS) plays a central
role in the theory of optimal intertemporal allocation over an infinite horizon.
While the optimal policy correspondence describes fully optimal behavior in
such models, it is quite difficult to compute it accurately, and it can be solved
in explicit form in only a very few highly specialized examples.

However, if non-stationary optimal programs, after a period of transition,
are close to a certain stationary program (and the transition period is not very
long), then their behavior can be approximately described by the stationary
optimal program. Thus, even though it is only by accident that an economy has
exactly a stationary optimal stock as its initial stock, a study of the existence,
uniqueness and (local and global) stability of stationary optimal programs is
of considerable significance.

Furthermore, if one is interested in comparative dynamics in this framework,
one observes that it might be very difficult to get definitive results for policy
purposes by varying a parameter and seeing the effect of it on the entire optimal
policy correspondence. On the other hand, if the stationary optimal program is
at least locally stable, then one can often predict the change in the stationary
optimal program following a “small” change in a parameter, and this can enable
one to conduct local comparative dynamics exercises in this framework.

In this essay, we present the basic results on the existence and uniqueness
of (non-trivial) stationary optimal programs. A comprehensive account of the
1 Our intellectual debt to William Brock and Lionel McKenzie, for our understanding

of the subject matter of this survey, should be quite obvious. In writing this survey,
we have relied heavily on our collaborative research with Jess Benhabib, Swapan
Dasgupta, and Ali Khan.



116 Tapan Mitra and Kazuo Nishimura

stability (or turnpike) property of stationary optimal programs is already avail-
able in McKenzie (1986), and we refer the reader to his definitive study of this
topic.

The existence of a stationary optimal stock (briefly, SOS) in multi-sector op-
timal growth models has been shown by Sutherland (1970) Hansen and Koop-
mans (1972), Peleg and Ryder (1974), Cass and Shell (1976), Flynn (1980),
McKenzie (1982, 1986) and Khan and Mitra (1986), among others. We follow
very closely the approach in Khan and Mitra (1986).

The demonstration of existence typically consists of three separate steps.
First, a fixed point argument is used to show the existence of what we call in the
sequel, a discounted golden-rule stock. Second, a separation argument in the
form of the Kuhn-Tucker theorem is used to provide a “price-support” to the
discounted golden-rule stock. Finally, a computation based on the price support
property is used to show that the discounted golden-rule stock is optimal among
all programs starting from that stock.

This approach, relying on duality theory (in the second and third steps),
is followed by Peleg and Ryder (1974), Cass and Shell (1976), Flynn (1980),
McKenzie (1982, 1986). An exception to this is Sutherland (1970) who relies
on methods of dynamic programming and is able to avoid supporting prices
and the Kuhn-Tucker theorem. However, Sutherland does not establish the
existence of a non-trivial SOS, and as noted by Peleg and Ryder (1974), the
null stock is always a SOS in a set-up which allows for the possibility of inaction,
and does not allow production of positive outputs from zero inputs.

Khan and Mitra (1986) use a purely primal approach to the existence of
a non-trivial SOS, and by a simple computation based on Jensen’s inequal-
ity, establish that a discounted golden-rule stock is always a SOS. Thus, once
the fixed point argument (the first step in the three-step argument indicated
above) ensures the existence of a discounted golden-rule stock, the existence of
a stationary optimal stock is also assured. This primal approach does not suf-
fer from the shortcoming noted in the dynamic programming method, for it is
simple to identify a condition on the economy (known as δ−normality) which
ensures that the discounted golden-rule stock (and therefore the corresponding
stationary optimal program) is non-trivial.

The existence of a discounted golden-rule stock therefore emerges as a key
concept of this subject. The idea is to approach an infinite-horizon optimization
problem by solving an appropriate two-period optimization problem.

A direct payoff of the primal approach of Khan and Mitra (1986) is that
an assumption frequently used in this literature (known as δ − productivity)
can be dispensed with, since its role is simply to ensure that Slater’s condition
holds when one invokes the Kuhn-Tucker theorem (in the second step of the
three-step argument).

Following Khan and Mitra (1986), we also use a purely primal approach to
show that a SOS, k, is always a discounted golden-rule stock, provided (k, k) is
in the interior of the technology set. This result is proved by McKenzie (1986),
relying on duality methods. Again, the proof involves three steps. First, a
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sequence of prices is found to support the stationary optimal program, following
the approach of Weitzman (1970). Second, by an argument due to Sutherland
(1967), a “quasi-stationary” price support is obtained from the above sequence
of supporting prices. Third, this (quasi-stationary) price support property is
used to show that the SOS is a discounted golden-rule stock. In dispensing
with support prices, we provide a direct and short proof. We also present an
example to show that the result fails when (k, k) is not in the interior of the
technology set.

In general, when future utilities are discounted (as we are assuming in our
framework throughout), there can be multiple (non-trivial) stationary optimal
stocks (even when the utility function of the economy is strictly concave, un-
like in the undiscounted case). Examples of economies with more than one
non-trivial stationary optimal stock were given by Kurz (1968), Liviatan and
Samuelson (1969) and Sutherland (1970). However, for some classes of mod-
els, one can provide sufficient conditions under which there can be only one
non-trivial SOS.

We present two distinct approaches to the uniqueness issue. First, in an
economy in which production is described by a simple linear model involving
no joint production, and the utility (derived from consumption alone) satisfies
a normality assumption, we show that there is exactly one non-trivial station-
ary optimal stock, using the methods of convex analysis (and, in particular,
duality theory). We also provide an example where the normality assumption
is violated and there are multiple non-trivial stationary optimal stocks. These
results illustrate the somewhat more general investigations along these lines
presented in Brock (1973) and Brock and Burmeister (1976).

Second, using the methods of differential topology, and relying on assump-
tions on the Jacobian obtained from the Ramsey-Euler equations (which hold
for an interior stationary optimal stock in a model in which the utility func-
tion is twice continuously differentiable in the interior of the technology set),
one can view the uniqueness result for interior stationary optimal stocks in the
discounted case as following from the uniqueness result in the undiscounted
case. Our approach follows Benhabib and Nishimura (1979), which generalizes
a result along these lines by Brock (1973).

5.2 Preliminaries

5.2.1 Notation

Let N be the set of non-negative integers {0, 1, 2, ...}, and let n-dimensional
Euclidean space be denoted by Rn, where ‖x‖ denotes the Euclidean norm of
any element x in Rn. For any x, y in Rn, we shall write x � y(x ≥ y) to denote
xi > yi(xi ≥ yi) for all coordinates i = 1, ..., n; and x > y to denote x ≥ y and
x �= y. For any set, S, the set of all subsets of S will be denoted by B(S) and
hence we shall write φ : X → B(Y ) for any correspondence (set-valued map) φ
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with domain X and range B(Y ). Finally, let e denote an element of Rn
+, all of

whose coordinates are unity.

5.2.2 The Model

The framework is described by a triplet (Ω, u, δ), where Ω, a subset of Rn
+×Rn

+,
is a transition possibility set, u : Ω → R is a utility function defined on this
set, and δ is the discount factor satisfying 0 < δ < 1. A typical element of Ω
is written as an ordered pair (x, y); this means that if the current state is x,
then it is possible to be in the state y in one period.

We will be using the following assumptions:
(A.1) (i) (0, 0) ∈ Ω; (ii) (0, y) ∈ Ω implies y = 0.
(A.2) Ω is (i) closed, and (ii) convex.
(A.3) There is ξ such that “(x, y) ∈ Ω and ‖x‖ ≥ ξ” implies “ ‖y‖ <

‖x‖”.
(A.4) If (x, y) ∈ Ω and x′ ≥ x, 0 ≤ y′ ≤ y, then (i) (x′, y′) ∈ Ω and

(ii) u(x′, y′) ≥ u(x, y).
(A.5) u is (i) upper semicontinuous and (ii) concave on Ω.
(A.6) There is ζ such that (x, y) ∈ Ω implies u(x, y) ≥ ζ.
A program from y ∈ Rn

+ is a sequence {y(t)}∞0 such that y(0) = y, and
(y(t), y(t+ 1)) ∈ Ω for t ≥ 0.

A program {y(t)}∞0 from y ∈ Rn
+ is an optimal program if

∞∑
t=0

δtu(y′(t), y′(t+ 1)) ≤
∞∑

t=0

δtu(y(t), y(t+ 1))

for every program {y′(t)}∞0 from y.
An optimal program {y(t)}∞0 from y ∈ Rn

+ is a stationary optimal program
if y(t) = y(t+ 1) for t ≥ 0. A stationary optimal stock is an element y ∈ Rn

+,
such that {y}∞0 is a stationary optimal program. It is non-trivial if u(y, y) >
u(0, 0).

A discounted golden-rule stock k is an element of Rn
+ such that

(i) (k, k) ∈ Ω
(ii) u(k, k) ≥ u(x, y) for all (x, y) ∈ Ω such that δy− x ≥ (δ− 1)k.

It is non-trivial if u(k, k) > u(0, 0).

5.2.3 Existence of Optimal Programs and the Principle of
Optimality

The following “boundedness properties” of our model are well-known.
(R.1) Under assumptions (A.3) and (A.4)(i) ,

(i) If (x, y) ∈ Ω, then ‖y‖ ≤ max [ξ, ‖x‖].
(ii) If {y(t)}∞0 is a program from y ∈ Rn

+, then ‖y(t)‖ ≤
max [ξ, ‖y‖] for t ≥ 0.
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The existence of an optimal program in this framework is also a standard
result.

(R.2) Under assumptions (A.1), (A.2), (A.3), (A.4) (i), (A.5) (i) and
(A.6), if y ∈ Rn

+, there exists an optimal program from y.
Given (R.2), there is an optimal program {y∗(t)}∞0 from each y ∈ Rn

+. We
define

V (y) =
∞∑

t=0

δtu(y∗(t), y∗(t+ 1))

V is known as the value function.
The following result is standard and is known as the “principle of optimal-

ity”.
(R.3) If {y(t)}∞0 is an optimal program from y, then

V (y) =
N∑

t=0

δtu(y(t), y(t+ 1)) + δN+1V (y(N + 1)) for N ≥ 0.

5.3 Equivalence of Discounted Golden-Rule and
Stationary Optimal Stocks

A stationary optimal stock constitutes a solution to an infinite horizon prob-
lem. It is a stock such that, if one starts from it, then among all programs
starting from it (whether stationary or not), the program which remains sta-
tionary at the initial stock is optimal. Yet the stationary nature of the solution
makes it plausible to conjecture that one might be able to find it by solving a
finite-horizon problem. The equivalence of a discounted golden-rule stock and
a stationary optimal stock shows that this is indeed the case, as the discounted
golden-rule might be seen as the solution to a problem involving two periods.

Our approach to this equivalence result follows Khan and Mitra (1986). It
is “primal” in that it makes no use of supporting prices, unlike most treatments
of it in the literature, which rely on duality theory.

Theorem 5.3.1. Every discounted golden-rule stock k is a stationary optimal
stock.

Proof. Let {y(t)}∞0 be any program from k. We shall show that it does not
give a higher discounted utility sum than the stationary program {k}∞0 .

Let x(T ) =
∑T−1

t=0 (1 − δ)δty(t)/(1 − δT ) and z(T ) =
∑T−1

t=0 (1 − δ)δty(t +
1)/(1 − δT ). Given convexity of Ω, certainly (x(T ), y(T )) ∈ Ω for all
T ≥ 1. We know that y(t) is bounded independently of t. Hence (x̄, z̄) =
limT→∞(x(T ), z(T )) is well-defined and is an element of Ω.

Now, by the fact that 0 < δ < 1, Jensen’s inequality yields u(x̄, z̄) ≥∑∞
t=0(1 − δ)δtu(y(t), y(t + 1)). But (x̄ − δz̄) = (1 − δ)[

∑∞
t=0 δ

ty(t) −∑∞
t=0 δ

t+1y(t + 1)] = (1 − δ)k. Since (k, k) is a discounted golden-rule stock,
certainly u(k, k) ≥ u(x̄, z̄), which implies:
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∞∑
t=0

δtu(k, k) ≥
∞∑

t=0

δtu(x̄, z̄) = u(x̄, z̄)/(1 − δ) ≥
∞∑

t=0

δtu(y(t), y(t+ 1))

We can now state a converse to Theorem 5.3.1.

Theorem 5.3.2. Every stationary optimal stock k such that (k, k) ∈ interior
Ω, is a discounted golden-rule stock.

Proof. Suppose not; then there exists (x, y) ∈ Ω such that δy − x ≥ δk − k
and u(x, y) > u(k, k). Since u is non-decreasing in the first component, we
can assume without any loss of generality that x = (1 − δ)k + δy. Let γ ≡
u(x, y) − u(k, k) > 0.

Using (x, y), we shall now construct a program {y′(t)}∞0 starting from k
that gives more discounted sum of utilities than the stationary optimal program
{k}∞0 . This furnishes us the required contradiction. Towards this end, for a
value of N to be determined later, let:

z(q) = (1 − δq)k + δqx for all q = 0, ..., N

Then, we have for all q = 1, ..., N,

z(q − 1)) = (1 − δq−1)k + δq−1x

= (1 − δq)k + δqy

using the fact that x = (1 − δ)k + δy. Thus, we have:

(z(q), z(q − 1)) = (1 − δq)(k, k) + δq(x, y) for all q = 1, ..., N. (5.1)

By convexity of Ω, we have (z(q), z(q − 1)) ∈ Ω for all q = 1, ..., N . Now
let {y′(t)}∞0 be defined by y′(0) = k, y′(t) = z(N − t + 1), for t = 1, ..., N ;
y′(N + 1) = z(0) = x; y′(t) = 0 for t ≥ N + 2.

We now show that for large enough N, {y′(t)}∞0 is a program. For this, it
only remains to show that (k, y′(1)) = (k, z(N)) ∈ Ω. But (k, k) ∈ interior Ω,
and so there exists α > 0 such that (k, y) ∈ Ω for all y ∈ S2 ≡ {y : k−2αe <<
y << k + 2αe}. Let S1 = {y : k − αe ≤ y ≤ k + αe}. From the definition of
z(q), it is clear that z(q) − δz(q − 1) = (1 − δ)k for q = 1, ..., N, which implies
(z(q)−k) = δ(z(q−1)−k). Since δ is less than 1, certainly z(q) → k as q → ∞
and hence there exists N1 such that z(N) ∈ S1 for all N ≥ N1.

Next, we can assert, using the concavity of u, that for all q = 1, ..., N ,

u(z(q), z(q − 1)) ≥ (1 − δq)u(k, k) + δqu(x, y) ≥ u(k, k) + δqγ.

By Mangasarian (7, p. 63), it is also true that

‖u(k, z(N)) − u(k, k)‖ ≤ A ‖z(N) − k‖ = AδN+1 ‖y − k‖ ,

where A ≡ (u(k, k) + β̂)/α, β̂ = −Miny ∈Wu(k, y) and W is the set of 2n
vertices of S1. Hence we have
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N+1∑
t=0

δt[u(y′(t), y′(t+ 1)) − u(k, k)] ≥ −AδN+1 ‖y − k‖ + (N + 1)δN+1γ.

On adding terms after the time period (N + 1), we obtain:

∞∑
t=0

δt[u(y′(t), y′(t+ 1)) − u(k, k)]

≥ δN+1((N + 1)γ −A ‖y − k‖ + {δu(0, 0)/(1− δ)} − δV (k)). (5.2)

Let N2 be a value of N such that the right-hand side of (5.2) is positive,
and let N

′
= Max(N1, N2). Now any {y′(t)}∞0 with N ≥ N

′
furnishes us with

a contradiction to the fact that {k}∞0 is a stationary optimal program.

A natural question arises as to whether the interiority hypothesis in Theo-
rem 5.3.2 can be dispensed with. The following example shows this not to be
the case.

Example 1:
Let Ω = {(x, y) ∈ R2

+ × R2
+ : Ay ≤ x, ey ≤ 3}, where:

A =
[

1 0
0 0.5

]
and e = (1, 1). Let δ = 1/2 and u(x, y) = ex. It is clear that this economy
satisfies all the assumptions made in Section 5.2. We shall show that k = (1, 0)
is a stationary optimal stock. To this end, observe that (k, k) ∈ Ω and consider
any program {y(t)}∞0 starting from k. Since (y(t), y(t + 1)) ∈ Ω, we have
y(t) ≤ (1, 0) for all t. Hence,

∞∑
t=0

δtu(y(t), y(t+ 1)) =
∞∑

t=0

δt(ey(t)) ≤
∞∑

t=0

δt

=
∞∑

t=0

δt(ek) =
∞∑

t=0

δtu(k, k).

Now let x′ = (1, 1), y′ = (1, 2). Certainly (x′, y′) ∈ Ω and δy′−x′ = δk−k.
But u(x′, y′) = ex′ = 2 > ek = u(k, k) and thus k is not a discounted golden-
rule stock.

5.4 Existence of Discounted Golden-Rule and Stationary
Optimal Stocks

Given the equivalence result of Section 5.3, the existence of a stationary optimal
stock can be established by showing that there exists a discounted golden-rule
stock. Since one can easily impose conditions on the economy to ensure that
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the discounted golden-rule stock obtained is non-trivial, this approach has the
advantage of identifying conditions on the economy sufficient for the existence
of a non-trivial stationary optimal stock. This advantage is not shared by the
dynamic programming approach followed by Sutherland (1967), a shortcoming
that was pointed out by Peleg and Ryder (1974).

Lemma 5.4.1. Let S = {x ∈ Rn
+ : ‖x‖ ≤ β} and φ and ψ be mappings from

S into B(Rn
+ ×Rn

+) such that for z ∈ S, φ(z) = {(x, y) ∈ Ω : δy−x ≥ δz− z}
and ψ(z) = {(x, y) ∈ φ(z) : u(x, y) ≥ u(x′, y′) for all (x′, y′) ∈ φ(z)}. Then,
ψ is a non-empty, convex-valued, and upper semicontinuous correspondence.

Proof. Clearly, S is a non-empty, convex, and compact set. Next, we claim that
φ is a non-empty, compact-valued correspondence. For any z ∈ S, we have
(0, 0) ∈ φ(z), and, since Ω is convex and closed, φ(z) is convex and closed.
Furthermore, if (x, y) ∈ φ(z), then ‖x‖ ≤ β. This implies, in turn, that if
(x, y) ∈ φ(z), then ‖y‖ ≤ β. Thus on defining S′ = {(x, y) ∈ Rn

+ × Rn
+ :

‖y‖ ≤ β}, we note that S′ is a non-empty, compact set, and for any z ∈ S,
φ(z) is a subset of S′. Since φ(z) is closed for each z ∈ S, φ(z) is compact for
each z ∈ S.

Since u is an upper semicontinuous function on Ω, and φ(z) is a non-empty,
compact subset of Ω, ψ(z) is non-empty for each z ∈ S. It is also convex by
concavity of u and convexity of φ(z).

Next, we show the upper semicontinuity of ψ. Let z∗ be an arbitrary
point of S. Consider a sequence {zn},with zn ∈ S, for n = 1, 2, 3, ..., with
zn → z∗ as n → ∞. Let (xn, yn) ∈ ψ(zn), and (xn, yn) → (x̂, ŷ). We want
to show that (x̂, ŷ) ∈ ψ(z∗). Since Ω is closed, (x̂, ŷ) ∈ φ(z∗). Suppose
(x̂, ŷ) /∈ ψ(z∗). Then there is some (x∗, y∗) ∈ ψ(z∗) and an ε > 0 such that
u(x∗, y∗) ≥ u(x̂, ŷ) + ε.

Now, since u is an upper semicontinuous function, lim
n→∞ sup u(xn, yn) ≤

u(x̂, ŷ). Thus, there is N1 such that for n ≥ N1, u(xn, yn) ≤ u(x̂, ŷ) + ε/3.
Consequently, for n ≥ N1,

u(x∗, y∗) ≥ u(xn, yn) + 2ε/3. (5.3)

Choose 0 < λ < 1 such that (1 − λ)[u(0, 0) − u(x∗, y∗)] ≥ −ε/3. We claim
that there is an N2 such that for n ≥ N2, (λx∗, λy∗) ∈ φ(zn). To see this,
observe that (0, 0) ∈ Ω and convexity of Ω imply that (λx∗, λy∗) ∈ φ(λz∗).
Since zn → z∗, there is N2 such that for n > N2, zn ≥ λz∗. Thus δλy∗−λx∗ ≥
(δ − 1)λz∗ ≥ (δ − 1)zn, establishing our claim.

Since (xn, yn) ∈ ψ(zn), for n ≥ N2,

u(xn, yn) ≥ u(λx∗, λy∗) ≥ λu(x∗, y∗) + (1 − λ)u(0, 0)
= u(x∗, y∗) + (1 − λ)[u(0, 0) − u(x∗, y∗)]
≥ u(x∗, y∗) − ε/3.

Using this in (5.3) for n ≥ Max(N1, N2),
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u(x∗, y∗) ≥ u(xn, yn) + 2ε/3 ≥ u(x∗, y∗) + ε/3,

a contradiction, which completes the proof.

Theorem 5.4.1. There exists a discounted golden-rule stock.

Proof. Define Q : S → B(Rn
+), where for z ∈ S, Q(z) = {x ∈ Rn

+ : (x, y) ∈
ψ(z)}. We will show that this correspondence Q satisfies all the requirements
of Kakutani’s fixed-point theorem.

Lemma 5.4.1 implies that Q is a non-empty, convex-valued correspondence.
It also implies that Q is upper semicontinuous. To see this, take an arbitrary
z∗ ∈ X . Let zn ∈ S, with zn → z∗ as n→ ∞. Let xn ∈ Q(zn), and xn → x̂
as n → ∞. We have to show that x̂ ∈ Q(z∗). Since xn ∈ Q(zn), there is yn

such that (xn, yn) ∈ ψ(zn). This means (xn, yn) ∈ φ(zn), and by compactness
of φ(zn), we can pick a subsequence (xn′

, yn′
) tending to (x̂, ŷ) ∈ φ(z∗). By

the lemma, (x̂, ŷ) ∈ ψ(z∗) and the claim is proved.
Thus, all the conditions of Kakutani’s fixed point theorem are fulfilled, and

there exists x0 ∈ Q(x0). This means there is some y0 such that (x0, y0) ∈
ψ(x0); that is,

u(x0, y0) ≥ u(x, y) for all (x, y) ∈ φ(x0).

But (x0, y0) ∈ φ(x0) implies x0 ≤ y0, and we obtain that (x0, x0) ∈ Ω, and
u(x0, x0) ≥ u(x0, y0) ≥ u(x, y) for all (x, y) ∈ Ω, with δy − x ≥ δx0 − x0.
Thus, by definition, x0 is a discounted golden-rule stock.

An economy (Ω, u, δ) is called δ − normal if there exists (x̄, ȳ) ∈ Ω such
that x̄ ≤ δȳ and u(x̄, ȳ) > u(0, 0).

Theorem 5.4.2. If the economy (Ω, u, δ) is δ-normal, there exists (i) a non-
trivial discounted golden-rule stock, and (ii) a non-trivial stationary optimal
stock.

Proof. By Theorem 5.4.1, there is a discounted golden-rule stock, x0. Given
δ-normality, there is (x̄, ȳ) ∈ Ω such that δȳ− x̄ ≥ 0 ≥ δx0 −x0, and u(x̄, ȳ) >
u(0, 0). Thus, by definition of a discounted golden-rule stock, u(x0, x0) ≥
u(x̄, ȳ) > u(0, 0), and hence x0 is a non-trivial discounted golden-rule stock.

By Theorem 5.3.1, x0 is a stationary optimal stock, and since we have
already checked that u(x0, x0) > u(0, 0), it is a non-trivial stationary optimal
stock.

Remark:
An economy (Ω, u, δ) is called δ−productive if there exists (x̄, ȳ) ∈ Ω such

that δȳ >> x̄. Flynn (1980) establishes a version of Theorem 5.4.2 under the
additional assumption of δ-productivity. This is because, after establishing the
existence of a discounted golden-rule, he uses the dual approach to show that
the discounted golden-rule stock is a stationary optimal stock, by providing an
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appropriate price-support. Then δ−productivity ensures that Slater’s condition
is satisfied in the application of the Kuhn-Tucker theorem.

We show now that there exist economies satisfying the hypotheses of The-
orem 5.4.2, whose technologies are not δ-productive, and for which there exists
a non-trivial SOS.

Example 2:
Let f(x) = 2x for 0 ≤ x ≤ 1 and f(x) = 2 + (x − 1)/2 for x ≥ 1. Let

Ω = {(x, y) ∈ Rn
+ : 0 ≤ y ≤ f(x)}, u(x, y) = 2f(x) − y and δ = 1/2.

Now (x̄, ȳ) ≡ (1, 2) ∈ Ω. Certainly δȳ−x̄ = 0 and u(x̄, ȳ) = 2 > 0 = u(0, 0).
Hence the economy is δ-normal. Also, for any (x, y) ∈ Ω, δy−x ≤ (1/2)f(x)−
x ≤ 0, since for x ≥ 1, f(x) ≤ 2x. Thus, there cannot exist any (x, y) ∈ Ω
such that x << δy and so the economy is not δ-productive.

Next, we claim that x∗ = 1 is a discounted golden-rule stock. Pick any
(x, y) ∈ Ω such that δy − x ≥ (δ − 1)x∗. Then y ≥ 2x − 1 and u(x, y) ≤
2f(x) − 2x+ 1. Now

u(x, y) ≤ 2(2x) − 2x+ 1 ≤ 3 for 0 ≤ x ≤ 1

and
u(x, y) ≤ 2(2 + (1/2)(x− 1)) − 2x+ 1 ≤ 3 for x ≥ 1.

In either case, u(x, y) ≤ 3 = u(1, 1) = u(x∗, x∗), and our claim is proved.
It should be noted that x∗ = 1 is an SOS by Theorem 5.3.1, which is

non-trivial, since u(1, 1) = 3 > 0 = u(0, 0).
We now present an example of an economy which satisfies all the assump-

tions of Section 5.2, and which is δ − productive, but which has only a trivial
SOS. This economy violates the δ − normality assumption, showing thereby
that Theorem 5.4.2 would not be valid if the δ − normality hypothesis is
dropped from its statement.

Example 3:
Let Ω = {(x, y) ∈ R2

+ : 0 ≤ y ≤ 2x1/2}, δ = 1/2, and u(x, y) = x− 2y. For
(x̂, ŷ) = (1/4, 1) ∈ Ω, we have δŷ >> x̂ and so the economy is δ − productive.
For any program {k}∞0 with 0 < k ≤ 4, we have

∑∞
t=0 δ

tu(k, k) < 0, and so it is
dominated by the program {y(t)}∞0 with y(0) = k and y(t) = 0 for t = 1, 2, ...
Since there is no stationary program {k}∞0 with k > 4, {0}∞0 is the unique
stationary optimal program.

5.5 Uniqueness of Non-trivial SOS

In this section we establish the uniqueness of non-trivial stationary optimal
stocks in a framework in which the technology is described by a simple linear
model (see Gale(1960)) involving no joint production, and the welfare function,
describing the utility derived from consumption (alone), satisfies a normality
condition2. We follow closely the approach, pioneered by Brock (1973), and
2 Optimal programs in a similar framework, but without the normality condition,

have been studied in detail by Dasgupta and Mitra (1999).
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developed further in Brock and Burmeister (1976). However, we rely entirely
on the methods of convex analysis, and do not make any differentiability as-
sumptions.

5.5.1 Description of the Framework

We describe the production side by an n × n non-negative matrix A = (aij),
where i = 1, ..., n and j = 1, ..., n, and a strictly positive vector b =
(b1, ..., bn) >> 0. Here, aij and bj are respectively the amounts of the i−th
good and labor which are required per unit output of the j−th good. The total
amount of labor available for production is stationary and is normalized to 1.
For each j = 1, ..., n, it is assumed that there is some i = 1, ..., n such that
aij > 0. Thus, each production process requires a positive amount of labor as
well as a positive amount of some produced factor. Further, it is assumed that
A is productive; that is, there is some ỹ >> 0 such that ỹ >> Aỹ and bỹ ≤ 1.
This essentially excludes the economically uninteresting case of a production
system which is unable to sustain some positive consumption levels for all of
the desired goods. The fact that A is productive ensures that (I − A) is non-
singular, and (I −A)−1 ≥ 0. The transition possibility set for this economy is
given by:

Ω = {(x, y) ∈ R2n
+ : Ay ≤ x and by ≤ 1}

We will assume in addition to the requirements stated above that A is
indecomposable; that is, there is no non-empty proper subset J of {1, 2, ..., n}
such that aij = 0 for i /∈ J, j ∈ J . In this case, we have the stronger result that
(I −A)−1 >> 0. It is also known that A has a unique Frobenius root, θ, which
is positive, and a real Frobenius vector, x∗, which is strictly positive (and taken
henceforth to be normalized so that bx∗ = 1). Since A is productive, we know
that θ ∈ (0, 1). We make the stronger assumption that:

0 < θ < δ (DF)

where δ ∈ (0, 1) is the discount factor. Since θ ∈ (0, 1), assumption (DF) will
always be satisfied for all discount factors close to 1. But, (DF) gives an explicit
lower bound for the discount factor under which the uniqueness theory, to be
described below, is valid. Thus, (DF) links the level of impatience, an aspect
of intertemporal preferences (δ), with a measure of the productivity of the
economy (θ). Under (DF), we have the important result3 that (δI −A) is also
non-singular, and:

(δI −A)−1 >> 0 (5.4)

Welfare is derived from consumption, as given by a function w : Rn
+ →

R, which is continuous, concave and monotone on Rn
+. In what follows, we

normalize w(0) = 0, and assume that w(c) > 0 if and only if c >> 0. We make

3 All the results relating to the Frobenius theorem that are stated in this paragraph
can be found in Nikaido (1968, p.102-108).
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stronger assumptions on w when consumption is strictly positive. Specifically,
we assume that w is strongly monotone and strictly concave on Rn

++.
We now describe the crucial normality assumption on w. Suppose p ∈ Rn

++

and M ∈ R++; consider the optimization problem described by:

Maximize w(c)
subject to pc ≤ M

and c ≥ 0

⎫⎬⎭ (P )

Clearly, under our assumptions, there is a unique solution c(p,M) to the prob-
lem (P ).

We assume that this solution is strongly monotone in M. That is, if p ∈
Rn

++, M ∈ R++ and M ′ > M, then:

c(p,M ′) >> c(p,M) (N)

This is known as the normality assumption on w, since it is satisfied when
all goods are normal goods (in the sense used in standard consumer behavior
theory).

Given w, the (reduced form) utility function for our framework is defined
by:

u(x, y) = w(x −Ay) for all (x, y) ∈ Ω

It can be checked that the economy (Ω, u, δ) as defined above satisfies all the
assumptions that were stated in Section 5.2.

If {y(t)} is a program from y, we will associate with it a consumption
sequence {c(t)} given by:

c(t) = y(t) −Ay(t+ 1) for all t ∈ N

5.5.2 A Uniqueness Result Under Normality

We now proceed to investigate the nature of stationary optimal stocks in the
framework described in the above subsection. To this end, we first summarize
in a couple of Lemmas some basic properties of any non-trivial SOS. Then, we
establish the uniqueness of non-trivial SOS under the normality assumption
(N).

Lemma 5.5.1. If y is a non-trivial SOS, then (i) c >> 0, and (ii) y >> 0.

Proof. Since y is a non-trivial SOS, we have u(y, y) > u(0, 0) = 0. Thus, we
obtain w(c) = w(y −Ay) = u(y, y) > 0, and by our assumption on w, we must
have c >> 0.

Since c = y−Ay = (I−A)y, and (I−A) is non-singular, with (I−A)−1 >>
0, we have y = (I −A)−1c >> 0.

The above lemma allows us to invoke a standard result on duality theory,
to provide a price support, q, to a non-trivial SOS, y; the quantity-price pair
(y, p) is usually referred to as a modified golden-rule.
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Lemma 5.5.2. If ȳ is a non-trivial SOS, then there is q̄ ∈ Rn
+, such that:

w(c̄) − q̄c̄ ≥ w(c) − q̄c for all c ≥ 0 (5.5)

and:
q̄(δȳ −Aȳ) ≥ q̄(δy − x) for all (x, y) ∈ Ω (5.6)

Furthermore, any q̄ satisfying (5.5) and (5.6) and v̄ ≡ q̄(δȳ−Aȳ) must satisfy:

q̄(δI −A) = v̄b (5.7)

and:
(i) q̄(δȳ −Aȳ) > 0, (ii) q̄ >> 0 (5.8)

And, ȳ must satisfy bȳ = 1.

Proof. The fact that there exists q̄ ∈ Rn
+ such that (5.5) and (5.6) holds, follows

from a standard application of duality theory. We proceed to verify (5.7).
Clearly, we have v̄ ≥ 0, since (0, 0) ∈ Ω. Define Y = { y ∈ Rn

+ : by = 1}.
Then, we have, using (5.6), for all y ∈ Y,

0 = q̄(δȳ −Aȳ) − v̄ ≥ q̄(δy −Ay) − v̄ = q̄(δy −Ay) − v̄by (5.9)

Thus, for all y ∈ Y, we have:

q̄(δy −Ay) − v̄by ≤ 0 (5.10)

Now, let y be an arbitrary vector in Rn
+, y �= 0. Then, there is λ > 0, such

that y′ ≡ λy is in Y. Applying (5.10) to y′, we have:

q̄(δy′ −Ay′) − v̄by′ ≤ 0

and so q̄(δy −Ay) − v̄by ≤ 0 must hold. This inequality also clearly holds for
y = 0. So, to summarize, we have now verified that:

q̄(δy −Ay) − v̄by ≤ 0 for all y ≥ 0 (5.11)

Clearly, we have bȳ ≤ 1, and so:

q̄(δȳ −Aȳ) − v̄bȳ ≥ q̄(δȳ −Aȳ) − v̄ = 0 (5.12)

Combining (5.11) and (5.12), we obtain:

q̄(δȳ −Aȳ) − v̄bȳ = 0 (5.13)

Using (5.11) and (5.13), we conclude that:

q̄(δȳ −Aȳ) − v̄bȳ ≥ q̄(δy −Ay) − v̄by for all y ≥ 0 (5.14)

Since ȳ >> 0 by Lemma 5.5.1, (5.14) yields (5.7).
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We now proceed to verify (5.8). To this end, first note that q̄ �= 0. For if
q̄ = 0, then by using (5.5), we must have w(c̄) ≥ w(c) for all c ≥ 0; but since
c̄ >> 0, this inequality would be violated for c = 2c̄.

We now claim that (5.8)(i) must hold. For, if it did not hold, then v = 0,
and (5.7) would yield q̄(δI − A) = 0. But, since (δI − A) is non-singular, we
must then have q̄ = 0, a contradiction.

Using (5.7) and (5.8)(i), we have q̄ = v̄b(δI − A)−1 >> 0, since (δI −
A)−1 >> 0, thereby establishing (5.8)(ii).

By the definition of v̄ and (5.13), we have v̄bȳ = v̄, so that bȳ = 1, since
v̄ > 0.

Remark:
We note that if ȳ is a non-trivial SOS, then by Lemma 5.5.2, bȳ = 1, and so

non-trivial stationary optimal stocks can never be in the interior of Ω in this
framework.

We now turn to the uniqueness result, illustrating the role of the normality
assumption on w.

Theorem 5.5.1. There is only one non-trivial SOS.

Proof. We know that there exists a non-trivial SOS in this framework, by using
Theorem 5.4.2; one can check, using (DF), that (δx∗, x∗) ∈ Ω satisfies δ −
normality, where x∗ is the Frobenius vector of A.

To establish uniqueness, suppose on the contrary that there are two non-
trivial stationary optimal stocks, y′, y′′, with y′ �= y′′. Then, since (I − A) is
non-singular, we must have c′ �= c′′. We now demonstrate that, as a result,
q′ and q′′ must be distinct, where q′ and q′′ are price supports of y′ and y′′

respectively, satisfying conditions (5.5), (5.6) of Lemma 5.5.2.
Suppose q′ = q′′. Then, by using (5.5), we have:

w(c′) − q′c′ ≥ w((1/2)(c′ + c′′)) − q′((1/2)(c′ + c′′))
> (1/2)[w(c′) − q′c′] + (1/2)[w(c′′) − q′c′′]

the strict inequality following from the fact that w is strictly concave on Rn
++

and c′ >> 0 and c′′ >> 0 by Lemma 5.5.1. Thus, we must have:

w(c′) − q′c′ > w(c′′) − q′c′′ (5.15)

Similarly, we get from (5.5),

w(c′′) − q′′c′′ > w(c′) − q′′c′ (5.16)

Clearly, if q′ = q′′, (5.15) and (5.16) cannot both hold. Thus, q′ �= q′′. Now, it
follows from (5.7) of Lemma 5.5.2 that v′ �= v′′, since (δI −A) is non-singular.

Without loss of generality, suppose that v′′ > v′. Define µ = (v′′/v′); then
µ > 1, and by (5.7), we must have q′′ = µq′.

Denoting q′c′ by M ′, we note that c′ is the unique solution to:
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Max w(c)
subject to q′c ≤ M ′

and c ≥ 0

⎫⎬⎭ (P ′)

Similarly, denoting q′′c′′ by M ′′, we note that c′′ is the unique solution to:

Max w(c)
subject to q′′c ≤M ′′

and c ≥ 0

⎫⎬⎭ (P ′′)

Since q′′ = µq′, it follows that c′′ is the unique solution to:

Max w(c)
subject to q′c ≤ q′c′′

and c ≥ 0

⎫⎬⎭ (P ′′′)

We can now split up our analysis into three cases (i) q′c′′ = M ′, (ii) q′c′′ > M ′,
(iii) q′c′′ < M ′.

In case (i), problems (P ′) and (P ′′′) are the same and so c′ and c′′ must
both solve (P ′), implying c′ = c′′, a contradiction.

In case (ii), we must have c′′ > c′ by normality of w. Thus, we obtain
(I−A)y′′ >> (I−A)y′, which implies that y′′ >> y′, since (I−A)−1 >> 0. But,
then, we get a contradiction by noting from Lemma 5.5.2, 1 = by′′ > by′ = 1.

The analysis of case (iii) is analogous to that of case (ii).
Thus, the hypothesis that there are two non-trivial stationary optimal stocks

must be false, and the theorem is proved.

5.5.3 An Example of Non-uniqueness of SOS

To emphasize the crucial role of normality of the welfare function in the above
result, we now present an example, where normality is violated, and there exist
two non-trivial stationary optimal stocks. The idea of the example follows the
discussion of this issue in Brock (1973) and Brock and Burmeister (1976); how-
ever, we are more explicit in our construction, and we ensure that the example
of non-uniqueness can be generated by a strictly concave welfare function on
consumption vectors.

The technology is described by a 2 × 2 matrix A and a two-dimensional
vector, b, which are specified as follows:

A =
[

0.5 0
0 0.4

]
; b =

[
1 1

]
We define the welfare function, w, only on the set C = {(c1, c2) : c1 ∈ [0, 1], c2 ∈
[0, 1]}, since the technology does not allow for consumption outside this set on
any program after the initial time period. A suitable extension of w from the
domain C to R2

+ can be constructed, preserving the key properties of w on
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C, but this is somewhat tedious, and is not included here. The function, w, is
defined on C as follows:

w(c1, c2) = qc1 − (1/2)rc21 − c1c2 +Qc2 − (1/2)Rc22

where r = 9.8/8 = 1.225, R = 9.8/12 = (2/3)r, q = 3 and Q = 2.41. A few of
the important relations between the parameters may be noted. We have r < 1.3,
R < 1, and rR = (9.8)2/96 = 96.04/96 > 1. Also, 4r + 6R = 9.8 = (49/5).

Note that for all (c1, c2) ∈ C,

w1(c1, c2) = q − rc1 − c2 > 0; w2(c1, c2) = Q−Rc2 − c1 > 0

so that w is increasing in each component of the consumption vector and:

w11(c1, c2) = −r, w22(c1, c2) = −R
w12(c1, c2) = w21(c1, c2) = −1

so that, using rR > 1, w is strictly concave on C.
The discount factor is specified to be δ = 0.9.
We will show that y′ = (0.5, 0.5) and y′′ = (0.6, 0.4) are both stationary

optimal stocks. These are stationary stocks with corresponding consumption
vectors c′ = (0.25, 0.3) and c′′ = (0.3, 0.24) = (c′1 + ε, c′2 − (6/5)ε), where
ε = 0.05. They are clearly non-trivial. Further, the corresponding input levels
are given by x′ = Ay′ = (0.25, 0.2) and x′′ = Ay′′ = (0.3, 0.16). There is
full-employment of labor for both stocks, since by′ = by′′ = 1.

To verify that y′ is a SOS, we use the dual approach, and define:

p′ = (q − rc′1 − c′2, Q−Rc′2 − c′1) = (w1(c′1, c
′
2), w2(c′1, c

′
2))

Then, p′ >> 0, and by concavity of w on C, we have:

w(c′) − p′c′ ≥ w(c) − p′c for all c ∈ C (5.17)

Given the definition of p′, we see that the relative price (p′1/p
′
2) = (5/4).

Since this is a crucial fact in our construction, we provide the necessary calcu-
lations as follows. We have:

(5 − 4r)c′1 + (5R− 4)c′2 = 0.1c′1 + (1/12)c′2 = 0.05

and:
(5Q− 4q) = 0.05

so that:
(5 − 4r)c′1 + (5R− 4)c′2 = (5Q− 4q)

and by transposing terms:

4(q − rc′1 − c′2) = 5(Q−Rc′2 − c′1)
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Using the fact that (p′1/p
′
2) = (5/4), we have:

p′(δI −A) = [0.4p′1, 0.5p
′
2] = p′2[0.5, 0.5]

= (1/2)p′2b

Thus, for all (x, y) ∈ Ω, we have:

p′(δy − x) ≤ p′(δI −A)y = (1/2)p′2by ≤ (1/2)p′2 = p′(δI −A)y′ (5.18)

Using (5.17) and (5.18), it is straightforward to check that {y′} is optimal4

from y′.
To verify that y′′ is a SOS, we define:

p′′ = (q − rc′′1 − c′′2 , Q−Rc′′2 − c′′1) = (w1(c′′1 , c
′′
2), w2(c′′1 , c

′′
2))

Then, p′′ >> 0, and by concavity of w on C, we have:

w(c′′) − p′′c′′ ≥ w(c) − p′′c for all c ∈ C (5.19)

Given the definition of p′′, we see that the relative price (p′′1/p
′′
2) = (5/4),

so that both stationary stocks have price supports, such that the relative price
is the same. This is important enough to justify providing the necessary calcu-
lations. We have:

(5 − 4r)c′′1 + (5R− 4)c′′2 = (5 − 4r)c′1 + (5R− 4)c′2
+(5 − 4r)ε− (5R− 4)(6/5)ε

Now, (5 − 4r) − (5R− 4)(6/5) = −(4r + 6R) + (5 + (24/5)) = 0 and so:

(5 − 4r)c′′1 + (5R− 4)c′′2 = (5 − 4r)c′1 + (5R− 4)c′2 = 0.05

Also, as noted above:
(5Q− 4q) = 0.05

so that:
(5 − 4r)c′′1 + (5R− 4)c′′2 = (5Q− 4q)

and by transposing terms:

4(q − rc′′1 − c′′2 ) = 5(Q−Rc′′2 − c′′1 )

Using the fact that (p′′1/p
′′
2) = (5/4), we have:

p′′(δI −A) = [0.4p′′1 , 0.5p
′′
2 ] = p′′2 [0.5, 0.5]

= (1/2)p′′2b
4 Strictly speaking, the pair (y′, p′) has not been shown to constitute a modified

golden-rule since (5.18) is only shown to hold on C. However, all programs starting
from y′ must have consumption vectors in all periods which belong to C, and so
the standard argument (which is used to show that the stock associated with a
modified golden-rule pair is an SOS) still applies.
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Thus, for all (x, y) ∈ Ω, we have:

p′′(δy − x) ≤ p′′(δI −A)y = (1/2)p′′2by ≤ (1/2)p′′2 = p′′(δI −A)y′′ (5.20)

Using (5.19) and (5.20), it is straightforward to check that {y′′} is optimal from
y′′.

We can check that normality is violated by w. Denote p′c′ by M ′ and p′′c′′

by M ′′. Then, using (5.17), and the strict concavity of w on C, we know that
the unique solution c(p′,M ′) to the problem:

Max w(c)
subject to p′c ≤M ′

and c ∈ C

⎫⎬⎭ (P )

is given by c′. Consequently, c(p′/µ,M ′/µ) is also given by c′, where µ =
(p′2/p

′′
2). But, since p′ = µp′′, we have c(p′′,M ′/µ) = c′; also, of course,

c(p′′,M ′′) = c′′. Now,

p′′c′′ = p′′2 [(5/4)c′′1 + c′′2 ]
= (p′′2/p

′
2)p

′
2[(5/4)c′1 + c′2 + (5/4)ε− (6/5)ε]

> (p′′2/p
′
2)p

′
2[(5/4)c′1 + c′2]

= p′c′/µ

Thus, we have M ′′ > M ′/µ, but c′′2 < c′2, so that normality of w is violated.

5.6 Uniqueness of Interior SOS for Smooth Economies

When the economy is smooth (the reduced form utility function is twice contin-
uously differentiable in the interior of the transition possibility set), the meth-
ods of differential topology can be used to demonstrate uniqueness of interior
stationary optimal stocks. This is done by establishing a connection (mathe-
matically, a homotopy) between the set of SOS in the discounted case with the
set of SOS in the undiscounted case.

When future utilities are undiscounted, the notion of optimality (defined
in terms of some version of the overtaking criterion) is somewhat different
from the one described in Section 5.2. However, we can avoid getting into a
full discussion of the undiscounted case by first stating a purely mathematical
result (Lemma 5.6.1), which helps us to effectively make the same connection
as is mentioned in the preceding paragraph.5

Lemma 5.6.1 is used in two ways. First, it helps us to provide a link between
the analysis of SOS (in the discounted case) in Sections 5.3 and 5.4 of this paper
with that offered in this section, which is in terms of stationary solutions to
5 For some discussion of optimality in the undiscounted case, see the bibliographic

remarks in Section 5.7 below.
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Ramsey-Euler equations (Proposition 5.6.1). Second, it allows us to examine
(see Lemma 5.6.2) the set of stationary solutions to Ramsey-Euler equations
in the undiscounted case. [Note that this can be done without discussing the
relation between these solutions in the undiscounted case and any notion of
optimal programs in the undiscounted case].

Lemma 5.6.2 provides the appropriate result to establish the uniqueness
theorem (Theorem 5.6.1) for interior SOS in the discounted case, by using
the homotopy invariance theorem and the degree theorem from differential
topology.

Since we will be dealing now with “smooth economies”, we strengthen as-
sumption (A.5) of Section 5.2 as follows:

(A.5+) u is (i) upper semicontinuous and (ii) concave on Ω. Further, u is
twice continuously differentiable in the interior of Ω.

Let us define Ω0 = {(x, y) ∈ int Ω : ||x|| < ξ}, where ξ is given by (A.3).
Then Ω0 is an open and bounded subset of int Ω. Further, if (x, x) ∈ intΩ,
then (x, x) ∈ Ω0 by (A.3). We denote the set {x : (x, x) ∈ Ω0} by Λ.

We define a function G from Λ× [0, 1] to Rn by:

G(x, ρ) = u2(x, x) + ρu1(x, x) (5.21)

In view of (A.5+), the function G is well-defined6 by (5.21). We denote the
Jacobian matrix of G, evaluated at (x, ρ) ∈ Λ × [0, 1], by J(x, ρ), and the
determinant of this matrix by detJ(x, ρ). Given ρ ∈ [0, 1], the set of solutions
in Λ to the equation G(x, ρ) = 0 is denoted by M(ρ).

Lemma 5.6.1. Suppose (k, ρ) ∈ Λ× [0, 1] satisfies:

u2(k, k) + ρu1(k, k) = 0 (5.22)

then there is p ∈ Rn
+ such that:

u(k, k) + p(ρk − k) ≥ u(x, y) + p(ρy − x) for all (x, y) ∈ Ω (5.23)

and (k, k) solves the maximization problem:

Max u(x, y)
subject to ρy − x ≥ ρk − k
and (x, y) ∈ Ω

⎫⎬⎭ (5.24)

Proof. Define p = u1(k, k); then p ∈ Rn
+. Concavity of u implies that for every

(x, y) ∈ Ω,

u(x, y) − u(k, k) ≤ u1(k, k)(x − k) + u2(k, k)(y − k)
= p(x− k) − ρp(y − k)

6 The use of ρ rather than δ here is deliberate. The discount factor, δ, has been
restricted to be less than 1 in our description of the basic model in Section 5.2. In
contrast, we definitely want ρ to take on the value 1, as well as values less than 1.
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the last line following from (5.22). Transposing terms yields (5.23). Clearly,
(5.24) follows directly from (5.23).

Using Lemma 5.6.1, we see that interior SOS are equivalent to stationary
solutions of Ramsey-Euler equations (in the discounted case).

Proposition 5.6.1. If (k, δ) ∈ Λ × (0, 1), then the following statements are
equivalent:

(i) u2(k, k) + ρu1(k, k) = 0.
(ii) k is a stationary optimal stock.

Proof. If (i) holds, then we can use Lemma 5.6.1 to obtain p ∈ Rn
+ such that:

u(k, k) + p(δk − k) ≥ u(x, y) + p(δy − x) for all (x, y) ∈ Ω (5.25)

Defining p(t) = δtp for t ≥ 0, we have for all t ≥ 0 :

δtu(k, k) + p(t+ 1)k − p(t)k ≥ δtu(x, y) + p(t+ 1)y − p(t)x for all (x, y) ∈ Ω
(5.26)

and:
lim

t→∞ p(t)k = 0 (5.27)

since δ ∈ (0, 1).Thus by the standard sufficiency result on price characterization
of optimality, {k} is optimal from k, which establishes (ii).

If (ii) holds, then using the fact that k ∈ Λ, we know that k solves the
maximization problem:

Max u(k, x) + δu(x, k)
subject to (k, x) ∈ int Ω
and (x, k) ∈ int Ω

⎫⎬⎭ (5.28)

Then, we obtain (i) as the necessary first-order condition of the problem (5.28).

To proceed with our analysis, we now impose the condition:

(B.1) There is (x̂, x̂) ∈ Ω0, such that G(x̂, 1) = 0 and detJ(x̂, 1) �= 0.

Lemma 5.6.2. Under condition (B.1), the equation G(x, 1) = 0 has exactly
one solution for x ∈ Λ.

Proof. By condition (B.1), x̂ ∈ Λ is a solution of the equation G(x, 1) = 0.
Suppose x′ ∈ Λ is also a solution to G(x, 1) = 0, with x′ �= x̂.

Using Lemma 5.6.1 for ρ = 1, we know that (x̂, x̂) and (x′, x′) are both
solutions to:

Max u(x, y)
subject to y − x ≥ 0
and (x, y) ∈ Ω

⎫⎬⎭ (5.29)

By convexity of Ω and concavity of u, we know that (x(λ), x(λ)) = λ(x̂, x̂) +
(1 − λ)(x′, x′) must also solve (5.29) for all λ ∈ (0, 1), and for every λ ∈ (0, 1),
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we have (x(λ), x(λ)) �= (x̂, x̂). But since detJ(x̂, 1) �= 0, the solution x̂ is locally
unique, and therefore for λ sufficiently close to 1, we get a contradiction. This
proves the lemma.

We now impose an additional condition on the set of solutions to G(x, ρ) =
0 :

(B.2) There is δ ∈ (0, 1), and an open set C, such that C̄ ⊂ Λ, andM(ρ) ⊂ C
for all ρ ∈ [δ, 1].

Here C̄ is the closure of C. The condition implies that for every ρ ∈ [δ, 1],
the boundary of C contains no solution to G(x, ρ) = 0.

In order to keep our exposition self-contained, we state the two results from
differential topology that we will need for the main result of this section. These
results, and their complete proofs, can be found in Ortega and Rheinboldt
(1970, Chapter 6), who follow the approach of Erhard Heinz (1959) in providing
an elementary analytic theory of the degree of a mapping7.

Homotopy Invariance Theorem:[Ortega and Rheinboldt (1970, Result
6.2.2, p.156)]

Let C be open and bounded and H : C̄ × [0, 1] ⊂ Rn+1 → Rn a continuous
map from C̄ × [0, 1] into Rn. Suppose, further, that H(x, ρ) �= 0 for all (x, ρ) ∈
∂C × [0, 1]. Then, deg(H(·, ρ), C) is constant for all ρ ∈ [0, 1].

Degree Theorem: [Ortega and Rheinboldt (1970, Result 6.2.9, p. 159)]
Let g : D ⊂ Rn → Rn be continuously differentiable on the open set D,

and C an open, bounded set such that C̄ ⊂ D. For x ∈ D, denote the Jacobian
matrix of g at x by Jg(x). If 0 /∈ g(∂C) ∪ g(S(C̄)), where S(C̄) = {x ∈ C̄ :
Jg(x) is singular }, either {x ∈ C : g(x) = 0} is empty and deg(g, C) = 0, or
{x ∈ C : g(x) = 0} consists of finitely many points x1, ..., xm, and:

deg(g, C) =
m∑

j=1

sgn det Jg(xj)

where sgn denotes the sign function8.
We now state and prove the main result of this section. The approach to the

uniqueness result may be indicated as follows. Using the Degree theorem, it is
possible to evaluate the degree of G(·, ρ) in a simple case, which is when ρ = 1
in our context, since there is a unique solution to G(x, 1) = 0 on Λ. To evaluate
the degree of G(·, ρ) in the case we are really interested in, namely when ρ = δ,
we create a homotopy between the two functions, G(·, 1) and G(·, δ), and apply
the Homotopy Invariance theorem; this is where condition (B.2) is used. This
procedure yields one evaluation of the degree of G(·, δ). However, applying the

7 That is, in their presentation of degree theory, the results do not involve any
concept, not familiar from standard real analysis in Euclidean spaces; nor do their
proofs.

8 That is, sgn is a function from R to {−1, 0, +1}, satisfying sgn(r) = +1 if r > 0,
sgn(r) = −1 if r < 0, and sgn(r) = 0 if r = 0.
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Degree theorem to G(·, δ), we get another evaluation of the degree of G(·, δ) in
terms of the behavior of the Jacobian of G(·, δ) at the zeroes of the function.
The idea then is to impose a hypothesis restricting this behavior in a way that
in turn yields an appropriate restriction on the number of zeroes of the function.

Theorem 5.6.1. Suppose detJ(x, δ) �= 0 for all x ∈ M(δ), and further the
sign of detJ(x, δ) is the same for all x ∈ M(δ). Then there is only one interior
SOS when the discount factor is δ.

Proof. Under the hypothesis, we need to show that M(δ) is a singleton. Define
f : Λ → R by f(x) = G(x, 1). The Degree theorem then gives us a formula for
computing the degree of f on C, where C is given in condition (B.2). Applying
the theorem to f on C, we get (in view of Lemma 5.6.2):

deg(f, C) = sgn detJf (x̂) ≡ sgn detJ(x̂, 1) (5.30)

where x̂ is given by condition (B.1). Thus, the deg(f, C), the degree of f on C,
is either +1 or −1.

Define F : Λ → R by F (x) = G(x, δ). We now show that deg(F,C) =
deg(f, C), by establishing a homotopy between f and F. To this end, define
H : C̄ × [δ, 1] → Rn by:

H(x, ρ) = G(x, ρ)

and note that C is open and bounded, and H a continuous map from C̄× [δ, 1]
to Rn. Further, by condition (B.2), H(x, ρ) �= 0 for all (x, ρ) ∈ ∂C × [δ, 1],
where ∂C denotes the boundary of C. Thus, by the Homotopy Invariance the-
orem, deg(H(·, ρ), C) is constant for ρ ∈ [δ, 1]. In particular, then, deg(F,C) =
deg(f, C), and so deg(F,C) is either +1 or −1.

Now, applying the Degree theorem to F on C, we know that M(δ) consists
of finitely many points x1, ..., xm, and:

deg(F,C) =
m∑

j=1

sgn detJF (xj) ≡
m∑

j=1

sgn detJ(xj , δ) (5.31)

The hypothesis of the Theorem ensures that detJ(xj , δ) �= 0 for all xj , and
further the sign of detJ(xj , δ) is the same for all j = 1, ...,m. Since we know
that deg(F,C) is either +1 or −1, (5.31) implies that we must have m = 1.
Thus, M(δ) is a singleton, and there is only one interior SOS for the discount
factor, δ.

Remark:
Brock (1973) showed that if J(x, ρ) is non-singular over M(ρ) for each ρ ∈

(ρ1, 1), then M(ρ) is a singleton for each ρ ∈ (ρ1, 1). Benhabib and Nishimura
(1979) provided conditions, which appear in the above Theorem, under which
J(x, ρ) might be singular for some ρ ∈ (δ, 1), but M(δ) is a singleton.
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5.7 Bibliographic Remarks

Sections 5.3 and 5.4:
The approach to existence of stationary optimal stocks that we have followed
is a primal one, because it is the most direct one, and it economizes on the as-
sumptions used. However, the dual approach provides, in addition, a supporting
price vector, and the quantity-price pair is then referred to as a modified golden-
rule. The price support is useful in looking at issues related to uniqueness and
global asymptotic stability of stationary optimal stocks. This dual approach is
surveyed in Mitra (2005).

We have confined our analysis to the case in which future utilities are dis-
counted. In the undiscounted case, programs are compared by using some ver-
sion of the overtaking criterion. The approach to the existence of stationary
optimal stocks in this context is somewhat different. It does not involve the fixed
point argument, which is replaced by arguments based on standard constrained
optimization theory. The subsequent step of showing that the golden-rule stock,
found as a solution to the constrained optimization problem, is indeed opti-
mal among all programs starting from that stock, is more complicated, and
makes essential use of duality theory and the price support to the golden-rule
stock. The complication arises from the fact that the convenient transversality
condition (in the discounted case) is not available in the undiscounted case.
The reader is referred especially to the contributions by Brock (1970) and Pe-
leg (1973), which are based on the earlier contributions by Gale (1967) and
McKenzie (1968).

The price-supported golden-rule is particularly useful in studying long-run
dynamic behavior of optimal programs in the undiscounted case. This has been
effectively demonstrated in applications of the theory to study the Faustmann
solution in the forest management problem (see Mitra and Wan (1986)) and to
analyze the choice of technique in development planning (see Khan and Mitra
(2005)).

There is no primal approach to the existence problem in the undiscounted
case, corresponding to the one presented here for the discounted case. It is of
interest to note that it is the dual approach which is employed by Mitra (1991)
in establishing existence of stationary optimal stocks in the undiscounted case
in models with a non-convex transition possibility set, which satisfies a star-
shaped property.

Section 5.5:
The approach of this section is based on Brock (1973) and Brock and Burmeis-
ter (1976), emphasizing the normality property of the welfare function, based
on consumption alone. However, unlike these papers, we emphasize the meth-
ods of convex analysis, and refrain from making differentiability assumptions
on the welfare function. Stationary optimal stocks turn out to be not in the
interior of the transition possibility set, making the framework of this section
distinctly different from that used in Section 5.6.
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Instead of a fixed coefficients Leontief type of technology with no-joint pro-
duction used in this section, Brock (1973) and Brock and Burmeister (1976)
use a non-linear activity analysis model, and appeal to the non-substitution
theorem. We have presented the results in the more restrictive framework, be-
cause the arguments involved are very transparent in this case. Some of this
theory can even be generalized to settings with joint production, provided an
approppriate version of the non-substitution theorem holds in that framework;
for this theory, see Benhabib and Nishimura (1979).

Section 5.6:
The methods of differential topology were used to address uniqueness problems
in general equilibrium theory by Dierker (1972). They were then used in optimal
growth models by Brock (1973) and Benhabib and Nishimura (1979).

We have presented this theory so that a reader, familiar only with standard
concepts in real analysis, should be able to follow the results without any
difficulty. Specifically, concepts and terminology used in differential topology
have been avoided.

For smooth economies, it is possible to develop a connection between the
normality assumption in Section 5.5, and the hypothesis on the behavior of
the Jacobian at the zeroes of the relevant function used in Section 5.6. This is
explored in detail in Benhabib and Nishimura (1979).
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